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INTRODUCTION

In 1973 Markel and Gray [ I presented a geometrical formulation of the lattice
approach to regression analysis (also used by Itakura and Saito [2] ). Their goal was the so-
lution of a stochastic problem (least mean squares or so-called autocorrelation or normal
equations) and consequently, the relations derived were functions of expected values of
variables. In particular, the results rely on the true autocorrelation matrix. More recently,
Morf et al. ([31 -[81 ) have developed time-recursive algorithms for the solution of the least
squares problem; i.e., the minimization of a finite time average of errors rather than the
expectation of the error. The least squares problem also involves a set of normal equations,
but in this case the relevant matrix is a finite-data approximation to the autocorrelation
matrix.

In this paper we utilize an inner-product formalism similar to that of [ I I to solve the
least squares problem. The structure so obtained is of considerable interest inasmuch as it
forms the basis for a whole class of recursive least squares lattice algorithms (31-[91 ). This
apporach also enjoys several other advantages. First, it provides a simplified derivation of the
above mentioned algorithms. (It is especially noteworthy that the inversion lemma for a par-
titioned matrix is not needed.) Secondly, the geometrical nature of the variables defined
makes their role in the algorithms readily apparent and lends some physical intuition as well.
Finally, many of the relations proved in [ I ] for expected values are shown to hold true for
the actual variables. These relations, such as the expression of the lattice gain coefficients in
terms of inner products, can provide important insights into the algorithms' behavior; i.e.,
regarding numerical stability, convergence (effect of T--oo), implementation, etc. ([ I ,[9 ).

DEFINITIONS

We begin with some vector notation. Let x(t) be a discrete time series, and define i
to be the vector whose tth component is given by

[R]1t  = x(t) t = 0, 1 . . .

Although this vector lies in an infinite dimensional space (5 e Roo), all our operations shall
be on finite dimensional subspaces thus alleviating the need for sophisticated mathematical
techniques. However, if so desired, the reader may assume an upper bound To such that

0 <t < To; i.e., R e RT 0 . By shifting i, we obtain a family of vectors i

x(t - i) t > i
W it =--2

0 0<t<i (2)

This family generates a nested set of subspaces SP defined by

SP = R0 , KI , .. ,P p = 0,. p0 (3)



where the curly brackets indicate the linear space spanned by the vectors it encloses. It is
assumed that the Vi's are linearly independent for 0 < i < p0; thus, Sp is p + 1 dimensional
for p < p0. Note also that S PC Sr for p < r.

We next introduce a family of pseudo-metrics on R' defined as follows:

T

(x'Y)T = wTt [I1 t

t0 (4)

i 112 T = (R, 5)T

where 0 < w < I is constant factor which "exponentially windows" the data ([81 -[9]).
Although < >T is singular on R* it is a true metric on Sp for sufficiently large T. More
precisely, a necessary and sufficient condition for < >T to be a metric on Sp for all
p < p0 is that the truncated vectors i' defined by

[K i t = W (5)
0 t>T

be linearly independent for 0 < i < p0 (see Appendix). We shall always assume this to be
the case. Note that a necessary condition is T > p0 .

It is also convenient to define the linear shift operator zi by

I xt+ i t+i0[z~ (6)

0 t+ i <O

where i may be any integer. It follows that

z = (7)

Note that zz - 1 = I but z-lz * I where I is the identity. A short calculation utilizing def-
initions (6) and (4) yields the relation

(zIY)T = (Rz)T-I (8)

Equation (8) will prove extremely important inasmuch as it relates time shift properties to
order (i.e., to the index i of the family Ri). It differs from the stochastic case of Markel
and Gray I1 ] inasmuch as z and z- are not quite adjoint operators (T is replaced by T-1
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in (8)). However, the shift properties are sufficiently powerful to allow < > to replace
expectation in the formalism.

The least squares problem whose solution we are ultimately seeking is the following:
Given sequences x(t) and y(t), find gP such that

P P

ir- PRI 1 2 = min 11 -3 qix 112. (9)
i=O q i=o

Actually this is a family of problems where the order p may range over 0 < p < p0 and the
time T over p0 

< T < T0 . Note that the weights w appearing in the definition of the metric,
(4), may be thought of as simply error weights, or as a sliding exponential window
Wt) + ('W) T-t x (t)) of the data [9].

LATTICE ORDER RECURSION RELATIONS

We shall repeatedly have need of the phrase "orthogonal projection with respect to
the metric < > T'" and hence shall use the abbreviation "proJT." Let
p-13 bP(T) i be the proiT of V onto Sp - l (where S- 1 empty set). Then we
i=0

define IP (T) by

p-I

jP (T)= jP- 3 bP(T)i. (10)
i=0

These vectors have several important properties.

We first note that jP(T) is the prolT of VP onto the orthogonal complement of Sp - in

SP;i.e.,0P (T),ZP)T = ( (Sp - ) . ,xP)T. AlsoS p = Sp- I ( P sothat ifor0<i p

form an orthogonal basis of Sp . In physical terms we may consider tP (T) as the error resid-

ual of a least squares backward predictor (estimator of V by Vi's for i < p) since

p-I p-I

I - bP (T)ill2 = minII~ p -3 qi i 2  (11)

i=0 q i=0

For future convenience, we define the magnitude-squared of jP (T) by

p ,
e (T) = I J p (T) I2 (12)
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It follows from the definitionof gP (T) that it is uniquely determined by the three
conditions

p (T) e SP  
(13a)

jp (T) - e Sp - I  (13b)

(jP(T), Ri)T = 0 for O<i-<p-I . (13c)

Equations (13) merely state that the set of ] (T) is obtained by applying the Gram-
Schmidt orthogonalization procedure to 0, 0 < i < p with respect to the metric < >T'

As in [ 1 we introduce a set of auxiliary vectors &P (T) to aid in the order recur-
sion. Let QP be the subspace

Qp= {i.. p (14)

p
and let f a (T) :0 be the projT of onto QP. Then we define &P(T) by

i= 1

p
ZP(T) = x- 0 - afi (15)

with magnitude squared

e (T) = II&P(T)I IT2  (16)

These &P(T) represent forward predictor residuals and are uniquely determined by the con-
ditions

&P(T) e Sp  (17a)

&P(T) - R0 e QP (I (7b) :l

(&P(T), i)T = 0 for l<i<p . (17c)

We now show that &P(T) and jP(T'-I) may be computed recursively via the rela-
tions

&P+I(T) = &P(T) + KP(T) z- 1  P(T-1) (18)
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I

P+ = z-1 3' P(T-I) + KP(T)&P(T) (19)

where KP(T) and KP(T) are constants which we shall subsequently determine (see (26)

and (29)).

To prove (18) we note that z-I3P(T-I) e Qp+I c Sp + I, and from (8)

(z-l~p(T - I ), i)T = (jP(T-1),zR1)TI fori>0

=(5P(T-I), Ri-I )T-I

=0 for 1<i<p . (20)

Thus for any constant K, 4 _ &P(T) + K z- IP(T- 1) satisfies (17a) and (17b) with p re-

placed by p + 1, and also satisfies

,i)T = 0 for I <i<p . (21)

In consideration of (21), condition (1 7c) will be satisfied for p + I provided

K is chosen such that

0 (,x-P+I)T = (T)+Kz-P(T-I), p+ I )T

i.e., if we choose K = KP(T) where

G&P (T), fp+ 1 (T) )T

= - (22)Kp (T) = (z- !  P (T-1), Rp+l (T))T

A similar analysis verifies (19) where KN(T) is chosen to satisfy

(z- 1  P (T-1), R0)T

KP (T) = - (23)

The appearance of T-I in the above equations should be noted. The z was necessary in

order to obtain a vector whose "p+l coefficient" was non-zero (see eq. (22)) which in turn

necessitated T-I in order that eq. (20) be valid (c.f. remarks after eq. (8)).
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SIMPLIFICATION OF KP AND KP

Equations (22) and (23) may be rewritten in a form which provides a simple geo-
metric interpretation. We first note that since P (T-1) is a projT-I. of RP, we have
(1P(T-01, Rp)T-1 = (P (T-1)3P (T-1))Tl1 =e(T-1). Thus

(z'13p(T-I),5ZP+')T = (13P(T-l),Rp)T-I ep(T-1) (24)

Similarly

= ep' (T) (5

We now show that the numerators of (22) and (23) are both given by

V (T) 4(&P (T), z1 (T-1))T (26)

We have, using (20),

(&P(T),Z1 13p(T-1))T =(X-( - ~,aP(T)x',z 13 (T-l))T~
~ 1 (27)

=( ,' Z13 (T-l))T

and from ( 17c)

p-I
(&P(T),zl0p(TlI))T = (&P(T),z-I (VP - I PTI~i)

i=0

= (0~ (T), z- xp)T

= (zip (T), RP+l )T (28)

It thus follows from (22), (23) and (26)-(28) that

KP (T) =- V~ (T)
oteP (T-I)

(29)

el?(T)
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For ease of notation let P = P(T) and = z -  P (T-1). Then

K, =  and KP = (30)

It follows from the Cauchy-Schwartz inequality that their product satisfies

0 < KojKp < 1 (31)

This condition is weaker than that of [ 1 where the gains are individually less than one.
However, relations (30) are exact for arbitrary input x(t) whereas [ 1 ] assumes a knowledge
of the true correlation matrix, a condition rarely met in practice. For w = 1 and under
reasonable conditions on x, (3i, 5j )T _ Rij approaches the true correlation matrix as

T -*oso that liml K,(T) I < 1 and lim I K(T) I < 1. This is not true for w < l, and either
T--oo T-_

I KU(T) I or I KP(T) I (but not both) may be greater than one. This may have serious stability
consequences ([ 1] - (2], [91 ).

TIME UPDATES

We introduce a set of auxiliary vectors 0P to aid in the time update defined as follows:

Let eT be the vector representing the Tth coordinate axis; i.e.,

ST jt = I { = T (32)

Then jP (T) is defined as the proiT of jT onto SP

iP (T) e SP

(33a)
P (T), T) T = (T')T

=YIT for T e SP  (33b)

p
(We could characterizeip (T) cp (T) i as in equations (10) -(!1), but this is not

i=0
needed in the development.) Thus, iP (T) picks out the Tth coordinate of all vectors in SP .

It is worth observing that P is a measure of the influence of the most recent data point

(coordinate axis T) on the pth order model (subspace SP).
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We define the squared magnitude of P (T) to be uP (T)

op (T) = I P(T) I 2. (34)

An important property of op (T) is that

0 P< p (T) < o q (T) < I forp < q. (35)

Relation (35) follows from definition (34) and the nesting of the SP's: SP C Sq so that the
magnitude of the projections jP must be an increasing function of p. Also

[jP(T) ]T = oP (T) = I IjP (T) 11 < [ jP (T)]12 which implies [P (T)IT < I.

Since SP+ I 
- P +l (T) and the set of vectors 3' (T) / -(T) for

0 < i < p + 1 form an orthonormalT basis of SP + I , the projT of J onto Sp+ I is equal

to its projection onto SP plus the vector

TT P+l (T) I p~ l (T)

jp+l (T) = P (T) + (P+l(

e (T)

= P (T) + p+l (T)IT Pl (T) (36)

CPP (T)

This gives an order recursion for jP (T) and a p (T).

We now derive the time update, recursion for jP. A useful relationship which follows

immediately from definition (4) is

(X,Y)T = w(,y)T-l + [X]T [TIT (37)

8



Thus,

(P T-1, zi) =w ( P (T-, RiTi + [P3(TIJ [j'IJ

=[t3P(T-1)IT (XZIT 0<i<P-1

= P [3(T-1.)]IT (jPi1 (T) ii)T .(38)

Consider P ~ (T-1) - U3(T-1l) IT jP (T). Then, from (38), (4K 3Z)T 0 for

0 i p - I Also 4 -R e SI'- and it follows that satisfies (13a) - (13c); i.e.,

P (T) and

~3'(T) = 13P (T-1) - II3P (T-l)iT jP- (T) (39)

A similar calculation (one must use (8) because of z-1) yields the time update for oYP

V T =V(T-I ) [ jP (T-1) IT Z- j- (T-1) . (40)

The time update for VI easily follows from equations (26), (28) and (40) by utilizing
the identities (8) and (37).

-P k(T) -P I(T), R PT

- & -(I(T-1), KP T + [~(T-1) IT (Z-1 jP-1 (T-1), 3xP')T

-wkP(T-1) - rP(T-1nIT liXIIT

+ r~(T-1) IT 4 P-1 (T-1), RP)T1  (41)

It follows from (36) (or simple geometric considerations) that

= tiPTI(T-I')TIiT-1

9



This combined with (41 ) yields

kp (T) = wkP (T-1) + [ P(T-1)]T I[P (T-)IT-l (42)

Two useful relations which may be used in deriving various forms of the least squares

algorithm (91) are obtained by taking the scalar productT of (39) and (40) with jP (T)

[fP (T)]T = [jP (T-l)]T ( - p-I (T)) (43a)

[ P(T)IT =[P (T-1)]T (1 - OP-1 (T-l)) (43b)

where we have used (36) in deriving (43a).

The time updates for P, e, and e rely on the following lemmas:

(z- 1 jp-1 (T-1),i0)T = (z- 1  p-1 (T-1),i 0 _- P(T)) T

=(jp-l (T-l), z ( 0 - &P (T)))T-1

= [X -P(T)]T (from(36))

=x [0 - a M(T)IT (44a)

and similarly

(jp-1 (T),EP)T = [P]T - f[P(T)]T (44b)

We can now calculate jP (T) from jP (T-1). Let l z p- (T-1) + K &P (T).

Then (;T, i)T = I x i I T for p > i > 0. For i = 0 we determine K by

[X0 IT=( ", R0)T

. JP(2- p- (T- 1), R0 )T + K (oP (T), R0 )T

Using (44a) we have

K ' (T)IT
ep (T)
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Thus,

P (T1 IT1 zp(T) I

where we have used (36).

Also, combining (44a) with (40), we have

Cap(T) = (&P (T),~ KOT

= (CIP(T-1), 50 )T &P [(T-1.) IT Q-1 jP-1 (T-1), K0 )T

= w(0-P(T-1), 0 >T-1 + [&P(T-I)IT (I K0 I1T - Iz ' (T-1I) T)

w COLP(T-1) + t&P(T-l)1T lap(T)IT .(46)

Finally, it follows from (44b) that

1EP(T) = weP(T-l) + I0P(T-VflT [ P(T)1T (47)

SOLUTION OF LEAST SQUARES PROBLEM

The least squares problem, (9), may now easily be solved by noting that

p
g(T) x is simply the proiT of jonto SP'. We define

1=0

=P (T gF g(T) R'. (48)

i=O

The by now familiar procedure yields the order update for jP in the form

jP+I (T) = jP (T) + KPl(T) P+l (T) (49)



where

()=-ki'~1 (T)
(T) T 7+ (50)

and

kPl(T) = (jP (T), 3PT1)T (1

= (TP (T), z-1 3i(T-1))T

Similarly, the time updates for TP and _kP are found to be

j i'(T) = jP (T-.1) - [;P (T-I.)1Ttp (T) (52)

V (T) = wkP (T-0) + [ jp-1 (T-1) I [ OP (T) IT (53)

with

=jP ()I 7P(T-1) IT (Il-aP (T)). (54)

The output variables we seek are usually [-P (T-I) I T as in noise cancelling, or

zP (T) y (T) - [fyi (T-l1) I T as in equalization [9]. (We address the determination of
gP (T) in the next section.) To achieve this, our algorithm need consider only a single com-
ponent of the vectors &P', 13P, and jP. More specifically, we choose

oi (T) = I Ft P(T) I (55a)

S3P(T) = ft3P(T)IT (55b)

7P(T) = 15i'(T-1)IT (550)

where removal of the bar indicates a particular vector component. We remark that relations
(43) and (54) allow us to alternate between [ (T-1 ) I T and [(T) I T, but for the applica-
tions mentioned (55c) is the most prudent choice 191.

The algorithm is now obtained by taking the Tth component of (18) and (19) and the
T + Ijst of (49). Order updates for the e's are obtained by taking the scalar product of (18),

12



(19) and (49) with V' (T), z-1 j31 (T), and j1 ' (T), respectively. These, combined with the
time updates of the k's ((42) and (53)) and relations (29) and (37), yield the algorithm of
reference 191

do (T) = p0-(T) x x(T) (56a)

e13()= o(T) =weat(T-lI) + x (T) (56b)

U1(T) = 0 (56c)

()= y (T) .(56d)

For p = 0,...,p

kP (T) = wkP (T-1) + 0' (T) OP (T-l) (57a)
1 - up-' (T-1)

x (T) 0P (T) -kP (T) PW (T-l)(5b

api- 0 (T (57b)
e(Tl)

6 P+I (T) =eP (T) - (k (T) ) (57d)

6p+l (T)= eP (T- ) - (kP (T)) 2 cp (Tl) (57e)

u(T) = eP1 (T-) + (P (T))/e (T) (57f)

c9 T) ~pl () +( 1P (T-) PPe (T) (7

7P(T) = -l (T) - kY (Tl -3 T (57g)

Q (T) = wkP (T- I) + yP- (T) OP (T) .(57h)If 7

Note that (56b) follows from (37). Aspects of the implementation of the above algorithm
such as initialization may be found in 191.
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THE NATURAL ISOMORPHISM

It is sometimes desirable to obtain the filter coefficients gP (T) (as in the fast
Kalman algorithm, 141-15 ). This may be achieved via a natural isomorphism which is the
analogue of that implicit in [11. The only difference is that here the inner product is defined
with respect to the estimated correlation matrix rather than the true correlation matrix.

More precisely, consider the set of polynomials in z- 1 of the form

CO

A(z 1 ) = ai z - i  (58)
i=0

where it is assumed that A has finite degree; i.e., ai = 0 for i > p for some p <00. Define a

family of inner products (-, -)T on these polynomials by

(A(z-I1 ), B(z- 1 ))T = aiRij (T)bj (59)
ij

where

T

Rij (T) = wT - t x(t -i) x(t-j) . (60)

t=0

Note that the conditions of the Appendix insure that (-, ")T is non-singular on all polynomials
of degree less than P0'

A(z) may be thought of as an operator on the vector space of equation (I) and the

mapping A(z - 1 ) - A(z - 1 )R maps the polynomials of degree p onto SP. It is easy to see that
this mapping is a metric space isomorphism (for p<p0 ).

(A(z- 1 ), B(z-I ))T = (A(z - I )'i, B(Z-I '))T (61)

It is a simple matter to translate the recursions of the previous sections into recur-
sions of polynomial coefficients via the inverse isometry. For example, let

p
'P (T) = cp (T)i. Since the i form a basis for SP, by matching the coefficients of

i=0
30 on both sides of equation (39), we obtain

bf ( T ) = bp (T - 1) -[iPp(T-I)- T cp  -  1 ) 0<i<p-i. (62)

14



Similarly, since { , ; i = .. , p [ form a basis for SP (D y, equation (52) yields the
filter coefficients

gP (T) = gP (T-I) - [,yP-I (T-)IT cP(T). (63)

This approach, the development of the algorithm through the polynomial coefficients

(a'i, b, c, gp ) is most practical if the order is fixed at some value p = PO' and the time up-
dates are used (c.f. [5] ). In this case the computational burden is 0(p0 ) per time update. If

gP for 0 < p < P'o and 0 < i < p is required there are p /2 variables to evaluate, and thegi 02

number of computations becomes 0(p0
2 ). Note, also, that for fixed p = Po the expressions

such as [ P0 (T-l) ]T which appear throughout (as in (62)) may be computed directly from
their definitions in 0(pO ) operations. For example,

P0-I
[ Po (T-1)IT = x(T-p0 ) - E bP0(T-I) x(T-i).

i=0

CONCLUDING REMARKS

In this paper we defined a class of metric spaces which resulted in a geometrical deri-
vation of least squares lattice algorithms. This inner-product formalism is closely related to
that found in [ 11 , but involves the actual input data rather than its second order statistical
properties. This is reflected in the use of a set of metrics indexed by time to replace the ex-
pected value. Note that such an approach lends itself naturally to a time-recursive formulation.

An advantage of the above structure is that it provides a single framework which en-

compasses an entire family of fairly complex algorithms (13]-[91] ). Its geometrical nature
also provides a guide for the intuition which should be of use in implementation and future
investigations. Finally, we wish to point out that there remain many questions which were
beyond the scope of this paper. Among these are stability properties, the role of w for
w < i, the significance of the scalar gains K and a, and the spectral properties of the lattice
decomposition. Some of the present techniques may also generalize to the case treated
in [101.

15



APPENDIX

INDEPENDENCE ASSUMPTION

The metric < >T is singular on SP 4o ri not all zero and

p Tri i suchthat 11 112=0 wT-t[1]2 = 0 Mt 0 for t<T-
T tt

P1

i gi = 0 * the xi are linearly dependent. Note that 50 are defined in (5).
i=0

Note also < >T is singular 9 3 ri not all zero such that

Pi 1 i, xJ )T = 0 for 0 <j < p * The matrix RP (T) defined by (60) with i,

< p satisfies I RR (T) ri 
= 0 4 RP (T) is singular.

1=0 -

The independence condition on the vectors x of (5) is thus a mixing condition. It

says that by the time T all the modes of the estimated correlation matrix RPO must be
excited; i.e., Rp D (T) is nonsingular.
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